Preparation of single-helix carbon microcoils (SH-CMCs) using Fe-Ni alloy catalyst I. Ozeki, S. Yang, X. Chen, and S. Motojima

Department of Applied Chemistry, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan

e-mail: motojima@apchem.gifu-u.ac.jp

Abstract

Carbon microcoils (CMCs) are a kind of vapor growth carbon fibers, which have an interesting 3D-helical/spiral structure with a coil diameter of micrometer orders and have a very high elasticity. Conventional double helix carbon microcoils(DH-CMCs) were prepared were prepared by a CVD process using Ni as a catalyst, acetylene as a carbon source gas under the atmosphere of nitrogen, hydrogen, and hydrogen sulfide. While the single helix carbon microcoils (SH-CMCs) were prepared by using an Fe alloy as a catalyst. The composition of the Fe-Ni alloy affect the morphology of the SH-CMCs dramatically. In this study, we synthesized SH-CMCs using an alloy Fe-Ni(50:50) as a catalyst, the SH-CMCs with a different morphology comparing to those SH-CMCs grown over an Fe-Ni(90:10) alloy catalyst; the preparation conditions, the morphologies, structure of SH-CMC and the growth mechanism were examined using SEM, TEM and Raman . The obtained SH-CMCs have a high purity. The coil diameter, coil's gap and fiber diameter were 1~2 µm, ~1 µm, 0.2~0.5 µm, respectively. Fig. 2c SH-CMCs are grown by a single growth direction mode, while fig.2b SH-CMCs are by double-growth direction mode. The structures of as-grown SH-CMCs and heat-treated SH-CMCs were compared. As-grown SH-CMCs were composed of amorphous carbon, while heat-treated SH-CMCs were graphitized in some degree.

Fig. 1. Reaction tube for the preparation of single-helix carbon microcoils (SH-CMCs).

Growth observation.

(a) CMC (b) SH-CMC (Fe:Ni=90:10), (c) SH-CMC (Fe:Ni=50:50), (d) Heat-treated SH-CMC (Fe:Ni=50:50)

Comparison of SH-CMC with CMC.

Fig. 2. SEM images of CMC and SH-CMC.

Table 1. Difference in synthesis condition.			
	Catalyst	Reaction temperature (°C)	Morphology
(a) CMC	Ni	750~800	Double helix
(b) SHCMC	Fe+Ni (90:10)	700~730	Single helix
(c) SHCMC	Fe+Ni (50:50)	800~830	Single helix

Structure of SH-CMC.

Efficiency of Fe/Ni ratio.

Fig. 4. Raman spectra of SH-CMC. (a) as-grown SH-CMC, (b) heat-treated SH-CMC.

Fig. 5. TEM images and electron diffraction patterns of SH-CMC. (c) as-grown SH-CMC, (d) heat-treated SH-CMC.

Conclusion

1. We obtained SH-CMCs using an Fe-Ni alloy catalyst at 820°C.

2. SH-CMCs are grown by a double growth direction mode.

③. As-grown SH-CMCs were composed of amorphous carbon, while heat-treated SH-CMCs were graphitized in some degree.

(4). We could control the coil diameter when C_2H_2 flow rate was changed.

Fig. 6. Relationship between coil diameter and C₂H₂ flow rate. Fig. 7. Relationship between Fe/Ni ratio and coil's morphology.