$\left\{ \left\| \right\| \right\}$

CMC触覚・近接センサ特性について

岐阜大学 工学部 産官学連携研究員 夏原大宗

報告内容

- 1. CMCセンサの概要
- 2. CMCセンサの作成方法
- 3. CMCセンサの電気的特性
- 4. CMCセンサの近接センシング特性
- 5. まとめ

-Carbon microcoils (CMC)

- 3D helical-coiled carbon fibers (Pure carbon)
- Double-helic or single-helix
- •Diameter of coils : 1~20 μm
- •Coil Length : 50~1000 μm
- Good elasticity (10 times longer than original coil length)

carbon microcoils (CMCs)

- (a) Representative shape
- (b) Extended CMC

The large changes in electrical parameters by expansion and contraction.

→CMC sensor have attracted much attention for tactile sensors [1].

Recently, we observed weak electrical signals for an approaching target object (human palm, metal object etc)

CMC sensor have proximity sensing property.

CMC近接センサ

CMC近接センサの特徴

- ・センサ構造が単純。
 - →CMCと母材(樹脂)の混合・成形で作製できる。
- ・表面形状(球面、凹凸面など)に関わらず設置が可能。
- ・高い触覚センシング機能を合わせ持つ。

CMCセンサの人工皮膚・人型ロボット用センサへの応用

CMCセンサの作製方法

近接センサの測定方法

ステージ台

Impedance Analyzer (Agilent 4294A)

測定電圧: 0.5V

測定周波数:40~200kHz

対象物:銅板、アクリル板、手

センサー対象物間距離: D_{s-o} = -1~50mm

CMCセンサの電気的特性

測定周波数:40~200kHz

対象物: Cu板 (40x40mm)

CMC添加量: 0.5~10wt%

CMCの長さ: 0.09mm

- 低添加量 (~1wt%)
 - → コンデンサ
- 中添加量 (2~4wt%)
 - → 抵抗+コンデンサ
- · 高添加量(5wt%~)
 - → 抵抗

インピーダンスの周波数特性

(センサ-銅板間距離 : D_{s-o}=50mm)

CMCセンサの近接センシング特性

周波数特性特性

近接センシング特性

低・中添加量を拡大

Impedance $|\mathsf{Z}|$ (Ω)

CMC添加量	Low ~1wt%	Middle 2~4wt%	High 5wt%~	
近接特性	×	0	×	
触覚特性	×	0	0	

近接および触覚センシング特性

CMC添加量の最適化

測定周波数:200kHz 対象物:Cu (40x40mm²)

CMC添加量: 0.5~7.0wt%

CMCの長さ: 1mm

最適添加量 : 2.5wt%

→近接信号増幅率: G_D=1.29

CMC近接センサの周波数特性

対象物: Cu板 (40x40mm)

CMC添加量: 2.5wt%

(a) インピーダンス Z

(b) 位相差 θ

インピーダンス・位相差:高周波数領域で増加

CMC添加量変化による影響

1

CMC近接センサの分解能

対象物:Cu板

対象物の大きさこ

 $3x3mm^2 \sim 60x60mm^2$

9mm²の銅板: G_p= 1.01

対象物なし(アクリル板): G_p= 1.00

→少なくとも9mm²の銅板の検出が可能

対象物による近接センシング特性

対象物 : 手, アクリル板, 銅板

CMC添加量 : 5wt%

測定周波数 : 200kHz

	手	アクリル板 (絶縁物)	銅板 (金属)
近接センシング特性	0	×	©
触覚センシング特性	0	0	©

CMC近接センサの検出距離

対象物:手

センサー銅板間距離(D_{s-o}):

30cm→0cm(接触)→30cm

Testing circuit of CMC sensor (CMC Technology Development Co.,Ltd.)

手を近づけたり、遠ざけたときの インピーダンスの実数部

CMCセンサから30cm離れた手の検出が可能

まとめ

- ◆ 電気的特性
- ・低添加量 (~1wt%) : コンデンサ
- ・中添加量 (2~4wt%) : 抵抗+コンデンサ
- ·高添加量(5wt%~):抵抗
- ◆ CMCセンサの近接センシング特性
- ·最適CMC添加量: 2.5wt%
 - →近接信号増幅率G_D=1. 29を達成
- ·最小検出分解能:9mm²以上のCu板の検出が可能
- ・最大検出距離: 30cm離れた手の検出が可能

接触から離したときのインピーダンス変化 対象物: Cu板 (40x40mm²)

以前の測定方法

CMC近接センサの応答速度

センサー銅板間距離 D_{s-o} : $50mm \rightarrow 1mm \rightarrow 50mmを繰り返す。$

近接センサの応答時間: 0.3~0.4s →対象物の移動時間か?